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abstract: Previous host-parasite coevolutionary theory has focused
on understanding the determinants of local adaptation using spatially
discrete models. However, these studies fall short of describing pat-
terns of host-parasite local adaptation across spatial scales. In con-
trast, empirical work demonstrates that patterns of adaptation de-
pend on the scale at which they are measured. Here, we propose a
mathematical model of host-parasite coevolution in continuous space
that naturally leads to a scale-dependent definition of local adapta-
tion. In agreement with empirical research, we find that patterns of
adaptation vary across spatial scales. In some cases, not only the mag-
nitude of local adaptation but also the identity of the locally adapted
species will depend on the spatial scale at which measurements are
taken. Building on our results, we suggest a way to consistently mea-
sure parasite local adaptation when continuous space is the driver of
cross-scale variation. We also describe a way to test whether contin-
uous space is driving cross-scale variation. Taken together, our results
provide a new perspective that can be used to understand empirical
observations previously unexplained by theoretical expectations and
deepens our understanding of the mechanics of host-parasite local
adaptation.

Keywords: host-parasite coevolution, local adaptation, continuous
space, spatial scale.

Introduction

Interactions between hosts and parasites have shaped pat-
terns of diversity across all scales of biological organization.
For example, coevolution with parasites can alter epide-
miological dynamics (Best et al. 2010; Débarre et al. 2012;
Lion and Gandon 2015), promote the evolution of sexual
reproduction (Otto and Nuismer 2004; Lively 2010), yield
novel mutualisms (Yamamura 1993), and influence patterns
of speciation across a broad range of taxa (Agrawal and
Zhang 2021). In each of these examples, the geography of
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the interspecific interactions plays a critical role in deter-
mining ecological and evolutionary outcomes. Previous the-
oretical studies of host-parasite coevolution have incorpo-
rated geography using models in which dispersal occurs
between spatially discrete locations (Gandon et al. 1996;
Boots and Sasaki 1999; Nuismer et al. 2000; Gandon 2002;
Gandon and Michalakis 2002; Nuismer 2006; Ridenhour
and Nuismer 2007; Gandon and Nuismer 2009; Débarre
et al. 2012; Lion and Gandon 2015). However, because most
species disperse in continuous space (Nathan et al. 2008)
and because the consequences of spatially continuous sys-
tems may only be poorly approximated by discrete space
models, there is a need for models that help us understand
the drivers of host-parasite local adaptation in spatially con-
tinuous systems.
A theoretical model of coevolution in continuous space

may also explain empirically observed variation in spatial
patterns of host-parasite adaptation across spatial scales.
Researchers often document a spatial pattern in which
greater support for parasite local adaptation is found at
larger spatial scales and little to no support is found at
shorter spatial scales (Hanks and Denno 1994; Kaltz et al.
1999; Thrall et al. 2002; Schönrogge et al. 2006; Tack et al.
2014). We lack a mechanistic explanation for why this pat-
tern should emerge because previous theory has not ex-
plicitly related parasite local adaptation to the geographic
distances that measurements are taken at. Furthermore,
these studies rely on indices of local adaptation that do not
explicitly account for geographic distance. Therefore, there
is a need to further integrate theoretical predictions and em-
pirical observations of spatial patterns of coevolution. In this
article, we aim to close this gap by analyzing the interaction
among host-parasite coevolution, random genetic drift, and
gene flow in a continuous two-dimensional habitat by in-
troducing a novel quantitative genetic model and an index
of local adaptation that explicitly accounts for the geo-
graphic distance measurements are taken at.
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We begin by introducing our model, which is a two-
species generalization of Slatkin’s (1978) model of quanti-
tative trait evolution in continuous space. We then intro-
duce our novel measure of local adaptation that explicitly
accounts for geographic distance. Analysis of our model
yields an interspecific spatial covariance function, called the
cross-covariance function, that allows us to calculate the
covariance of traits for host and parasite populations as a
function of the geographic distance separating those popu-
lations. In particular, the cross-covariance function accounts
for spatial autocorrelation of trait values in each species,
which occurs when traits measured at different locations
tend to look more similar the closer they are geographi-
cally. Combining our model of host-parasite coevolution
with our continuous space index of local adaptation, we
find that parasite local adaptation can be expressed in terms
of the cross-covariance function. Our main finding is that
parasite local adaptation depends on the spatial scale mea-
surements are taken at relative to the spatial scales of phe-
notypic autocorrelation for both species. In some cases, not
only the magnitude of local adaptation but also the identity
of the locally adapted species can vary across spatial scales
because of spatially autocorrelated traits. Building on our
theoretical results, we make a suggestion for obtaining a con-
sistent measurement of parasite local adaptation when cross-
scale variation is due to spatial autocorrelation. In the dis-
cussion section, we also suggest an approach to test whether
cross-scale variation is due to spatial autocorrelation and
describe two directions for generalizing our model.
Methods

The Model

Our model tracks the evolution of local mean traits for
a pair of species codistributed across a continuous two-
dimensional geographic landscape. For each species, the
genomic architecture of their traits is based on an infin-
itesimal approximation such that the trait of an individ-
ual can be thought of as the sum of an infinite number of
allelic effects (with no epistasis or dominance), each of in-
finitesimal size (reviewed in Barton et al. 2017). The pri-
mary components of our model (selection, reproduction,
and dispersal) can be thought of as different stages in the
life cycle of an individual. We assume the life cycle be-
gins by determining fitness in response to selective forces,
including interspecific interactions, followed by the pro-
duction of offspring that disperse to new locations, inherit
trait values that are normally distributed around paren-
tal trait values, and repeat the cycle of life. However, in-
stead of explicitly tracking individuals, ourmodel focuses on
the dynamics of mean traits averaged across individuals at
each location in a two-dimensional geographic landscape.
In this section, we begin by outlining our approach to
account for biotic and abiotic selection. We then discuss
our model of dispersal and random genetic drift before com-
bining these components into our working model. Model
parameters are summarized in table 1. A more thorough
and technically detailed introduction to and justification
for our model is presented in sections S1 and S2 of the sup-
plemental PDF, respectively.

Selection. We assume that fitness consequences for inter-
actions between hosts and parasites are mediated by the
difference in quantitative traits zH 2 zP, where zS is the trait
value of an individual in species S p H, P for host and
parasite, respectively. More precisely, we assume that the
probability of infection increases the more similar traits are
and decreases with trait mismatch. Given a successful in-
fection, we assume that the host incurs a fitness cost and the
parasite receives a fitness benefit. As a consequence, the host
trait will evolve to evade the parasite trait in response to
biotic selection, while the parasite trait evolves to match the
host trait.
To draw biologically meaningful conclusions, we ana-

lyze our model at equilibrium. Then, to ensure our model
has an equilibrium, we also account for abiotic selection
that is stabilizing with strengths AH, AP. As our equilibrium
analysis of the model is agnostic to globally averaged trait
values, without loss of generality we assume that stabiliz-
ing selection pulls both traits toward zero. Additionally,
our approach to computing spatial covariance functions
(outlined in sec. S3 of the supplemental PDF) requires that
biotic selection be weak relative to abiotic stabilizing selec-
tion for both species (BS ≪ AS, S p H, P).
Following classical quantitative genetics, we assume that

trait distributions of local populations are normal with mean
�zS(x) for species S at the two-coordinate location x p
(x1, x2). Although this assumption may be violated as dis-
persal can lead to skewed trait distributions (Débarre et al.
2015), this effect does not occur when dispersal distance
is short relative to the spatial scale of trait variation. As
will be shown in the results section, we find that dispersal
distances are always short relative to spatial scales of trait
variation when selection is weak.
Table 1: Model parameters
Symbol
 Description
AH
 Host abiotic stabilizing selection

AP
 Parasite abiotic stabilizing selection

BH
 Host biotic selection

BP
 Parasite biotic selection

jH
 Host dispersal distance

jP
 Parasite dispersal distance

DH
 Rate of host (phenotypic) drift

DP
 Rate of parasite (phenotypic) drift
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Drift. Random genetic drift can lead to variation in evo-
lutionary trajectories across spatial locations. In our model,
drift provides the ultimate source of geographic variation
in phenotypes; this geographic variation then interacts with
gene flow and selection to yield distinct spatial patterns. The
classic model for the response of a quantitative character to
random genetic drift is given by Lande (1976). This model
states that the change in mean trait in response to drift be-
tween consecutive, nonoverlapping generations follows a
normal distribution with variance equal to the ratio of ad-
ditive genetic variance to effective population size. The con-
tinuous time analog of this model is trait evolution follow-
ing Brownian motion, which has been widely applied as
a phenomenological model in the field of phylogenetic com-
parative methods (Felsenstein 1973; Manceau et al. 2016).
Mechanistically, this result has been formalized in contin-
uous time by Week et al. (2021). In our continuous space
setting, we extend this model so that different locations
experience uncorrelated effects of drift (see sec. S1 of the
supplemental PDF for mathematical details), with rate DS

for species S. We denote the spatial noise process captur-
ing drift for species S by yS(x), which is normalized to have
unit rate. That is, DSyS(x) is the instantaneous evolution-
ary response to drift for species S at location x.

Dispersal. We assume that displacement between parental
and offspring birthplaces follows a bivariate Gaussian distri-
bution centered on zerowith displacement in each direction
drawn independently. These assumptions prevent any net
directionality in dispersal. For species S, we assume that dis-
placements in the two directions are drawn with a standard
deviation jS, which we refer to as the dispersal distance.
Gaussian dispersal leads to change in �zS(x) toward a

local average, where the scale of “local” is determined by jS.
The local mean trait will increase or decrease depending
on the concavity of the spatial mean trait surface. As the
concavity of a surface is quantified by a second spatial deriv-
ative, the effect of Gaussian dispersal on the instantaneous
rate of change in local mean trait value is related to the sec-
ond spatial derivative.

Selection, Dispersal, and Drift.We combine the evolution-
ary forces described in the previous sections to obtain our
working model as
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where AS is the strength of abiotic stabilizing selection, BS

is the strength of biotic selection, jS is the dispersal dis-
tance, and DS is the rate of random genetic drift for spe-
cies S.
A full technical description of our model can be found

in section S1 of the supplemental PDF. The system of equa-
tions (1) forms a pair of linear stochastic partial differential
equations (Khoshnevisan 2008; Hairer 2009). In the absence
of coevolution, the well-studied equilibrium solution to this
model is a Gaussian random field (Whittle 1954; Whittle
1963; Lindgren et al. 2011; Lindgren 2012). Background
on Gaussian random fields is provided in section S2 of the
supplemental PDF. As our model of coevolution implies a
linear interaction between two fields, the methods used by
Whittle (1954, 1963) to study the case of no interaction
can be extended to show that the equilibrium solution of
equations (1) is also a Gaussian random field. To illustrate
our model, a single realization of mean trait values across
space for the two species is provided in figure 1.
Equilibrium solutions to our model are completely char-

acterized by five quantities: (1) the expected host mean
trait at each location mH, (2) the expected parasite mean
trait at each location mP, (3) the covariance between host
mean traits sampled at any displacement CH(x), (4) the
covariance between parasite mean traits sampled at any
displacement CP(x), and (5) the cross-covariance between
host and parasite mean traits sampled at any displace-
ment CHP(x). As our primary interest is in the spatial co-
variances of mean traits, we ignore the expected values mH,
mP. In fact, the key quantity derived from our model for
drawing conclusions on host-parasite local adaptation is
the interspecific cross-covariance between traits CHP(x).
We describe our analytical approach to approximating this
cross-covariance function in section S3 of the supplemen-
tal PDF. To make use of this cross-covariance function for
understanding cross-scale variation in patterns of local adap-
tation, we introduce a new index of local adaptation in the
following section that explicitly accounts for the effects of geo-
graphic scale.

ð1bÞ
Local Adaptation in Continuous Space

There are two popular definitions of local adaptation at
the population level (Kawecki and Ebert 2004; Blanquart
et al. 2013; but for a third definition, see Nuismer and
Gandon 2008). The first, known as “home versus away,”
is the mean fitness of a population (where mean fitness
of a population is defined as the average fitness among
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all individuals in that population) in its local environment
minus the average mean fitness of that population when
transplanted to any other location. An alternative defini-
tion, known as “local versus foreign,” is the mean fitness
of a population in its local environment minus the aver-
age mean fitness of populations transplanted from any
other location to that local environment. These definitions
are particularly well suited for metapopulations, composed
of a finite number K of discrete locations, because a ran-
domly drawn foreign location (for home versus away) or
population (for local versus foreign, but from here on we
simply write location) occurs with probability 1=K . How-
ever, this definition fails to account for the effects of geo-
graphic scale on measurements of local adaptation. There-
fore, we introduce a definition that explicitly accounts for
the geographic scale at which measurements are taken.
To obtain an index of local adaptation for species dis-

tributed continuously in space that accounts for geographic
scale, we compute the population growth rate (referred to
as a Malthusian growth rate in Crow and Kimura 1970) for
a population in its local environment (say at location x)
minus the growth rate for the focal population when trans-
planted to a different location y. This definition corre-
sponds to a home versus away definition of local adapta-
tion, as described above. Although classical indices of local
adaptation are defined in terms of fitness as lifetime ex-
pected number of offspring, we chose population growth
rate because it leads to relatively simple mathematical ex-
pressions. However, given the close correspondence be-
tween growth rate and fitness, conclusions drawn using ei-
ther one should be qualitatively similar.
We denote by mH(z, x) the population growth rate of
hosts with trait z encountering parasites located at x. Sim-
ilarly, mP(z, x) is the growth rate of parasites with trait z
encountering hosts located at x. Expressions for these growth
rates are given by equations (S33) in section S4 of the sup-
plemental PDF. The population growth rate for individ-
uals of species S transplanted from location x to location
y, written �mS(x, y), is then the average of mS(z, y) across
trait values of individuals in species S at location x.
As our model considers mean traits as random variables,

the averaged population growth rates �mH(x, y), �mP(x, y)
are also random variables. We therefore define local ad-
aptation in terms of expectations of these growth rates. The
measure of local adaptation we propose, ℓS(x, y), allows
us to calculate the expected difference between popula-
tion growth rates for individuals of species S drawn from
location x reared locally compared with individuals trans-
planted to location y. Therefore, this definition explicitly
accounts for the spatial distance between locations x and y.
Mathematically, our definition of local adaptation is ex-
pressed as

ℓS(x, y) p E[�mS(x, x)2 �mS(x, y)]: ð2Þ

Following this notation, a local versus foreign defini-
tion of local adaptation (as described above) would cor-
respond to ℓS(x, y) p E[�mS(x, x)2 �mS(y, x)]. However,
under our model we find E[�mS(y, x)] p E[�mS(x, y)], and
thus the two definitions coincide. This is a consequence
of solutions to our model being spatially isotropic, which
is defined in section S2 of the supplemental PDF. Although
� � � �

Figure 1: A single realization of our model. Shown are local mean trait values �zH(x), �zP(x), given by equations (1a) and (1b), respectively,
across geographic space x p (x1, x2), where x1 quantifies eastings and x2 quantifies northings, for the host (left) and parasite (right). Local
mean trait values are colored according to the scale on the right. Here we have made the dispersal distance of the host to be five times that of
the parasite, with all other pairs of parameters equal.
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the index of local adaptation we introduce here can be
applied to quantify both host and parasite local adaptation,
in practice most empirical researchers focus on measur-
ing parasite local adaptation only. For clarity and brevity,
we then discuss only parasite local adaptation below, but
note here that this index applies equally well to host local
adaptation.
In the results section, we combine this definition of

local adaptation with the population growth rates found
in section S4 of the supplemental PDF to uncover patterns
of local adaptation between hosts and parasites coevolving
in continuous space.
Results

Spatial Covariance Functions

Intraspecific Spatial Covariance. Taking our approach
outlined in section S3 of the supplemental PDF, we obtain
analytic approximations for the (intraspecific) spatial co-
variance and (interspecific) spatial cross-covariance func-
tions of host and parasite mean trait values at equilibrium.
We find spatial covariance functions for the host and par-
asite respectively take the forms

CH(x) p
ffiffiffi
2

p
VH

kxk
lH

K1

ffiffiffi
2

p kxk
lH

� �
, ð3aÞ

CP(x) p
ffiffiffi
2

p
VP

kxk
lP

K1

ffiffiffi
2

p kxk
lP

� �
, ð3bÞ

where kxk is the geographic distance between sampled
locations; VH, VP are the colocated variances (i.e., VS p
CS(0)); lH, lP are the spatial scales of autocorrelation in
each species; and K1 is the modified Bessel function of the
second kind, order 1 (Abramowitz and Stegun 1965). These
spatial covariance functions belong to the class of Matérn
covariance functions that have been widely employed in
the fields of spatial statistics (Stein 1999; Lindgren et al.
2011) and machine learning (Rasmussen and Williams
2006). In figure 2, we illustrate the relationship between
patterns of phenotypic spatial variation and associated spa-
tial covariance functions.
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Figure 2: Mean trait surfaces �z(x) (left), given by equations (1), and associated intraspecific covariance functions C(x) (right), given by
equations (3), across three different spatial scales of autocorrelation l p 0:01, 0:1, 1, with colocated variance V p 1. This illustrates the
relationship between the spatial scale of phenotypic autocorrelation and the variance of trait values across a fixed region. More precisely,
increasing the spatial scale of autocorrelation l (due to either increased dispersal distance or relaxed selection strengths; see eqq. [4]) leads
to decreased trait variation in a fixed region.
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Our results also demonstrate that the spatial scales of
phenotypic isolation by distance in the host and parasite
can be expressed in terms of model parameters respec-
tively as

lH p
jHffiffiffiffiffiffi
AH

p , ð4aÞ

lP p
jPffiffiffiffiffi
AP

p :
ð4bÞ

From these expressions, we see that these spatial scales
are proportional to the dispersal distances in the respective
species; the farther individuals tend to move, the larger the
spatial scales one must observe to find significant pheno-
typic variation. We also see that increased abiotic stabiliz-
ing selection decreases these spatial scales in each species.
Under the assumption of weak abiotic stabilizing selection
(which would imply AH ,AP ≪ 1 and which is required in
our justification of population growth rates; see section S4
of the supplemental PDF), our expression for the spatial
scale of phenotypic variation coincides with that found by
Slatkin (1978).
The colocated phenotypic variances, VH and VP, rep-

resent uncertainty in mean trait value at a particular lo-
cation due to different possible realizations of drift. This
should not be confused with the typical notion of pheno-
typic variance, which represents the variance of trait values
among individuals in a population. As solutions to our
model are spatially homogeneous random fields (i.e., they
have the same statistical properties at any given spatial
location), mean traits of individuals of species S sampled
at locations separated by distances much greater than lS

escape the effects of spatial autocorrelation and return es-
sentially independent and identically distributed random
variables with variances equal to the colocated variance VS.
That is, the colocated variances also provide measures of
global diversity of mean traits across space. In terms of
our model parameters, the colocated variances can be ex-
pressed as

VH p
D2

H

AHj
2
H

, VP p
D2

P

APj
2
P

: ð5Þ

From the expressions for VH and VP, we can identify
relationships between global diversity of mean traits in
each species and the different evolutionary processes of
selection, dispersal, and drift. First, increased dispersal dis-
tance jS decreases VS because, in the limit of infinite dispersal
distance, our model collapses to a panmictic population of
infinite size. Additionally, because abiotic selection is stabi-
lizing around spatially homogeneous optima, increased AS

decreases VS. Last, the variance due to drift DS, the ultimate
source of spatial differentiation in our model, increases with
additive genetic variance and decreases with effective pop-
ulation size (Lande 1976; Week et al. 2021).

Interspecific Spatial Cross-Covariance. In contrast to the
intraspecific spatial covariance functions above, the spa-
tial cross-covariance function, which quantifies interspe-
cific trait covariance measured at two potentially different
locations, does not yield a closed-form expression. Specifi-
cally, we find that the cross-covariance function is approx-
imated by

CHP(x) p
ð
R2

BP

AP

K0(kyk=lP)
l2

P

CH(x2 y)

2
BH

AH

K0(kyk=lH)
l2

H

CP(x2 y)dy:

ð6Þ

Although the expression for CHP(x) is quite technical,
we can still draw some basic conclusions. For one, we
see that interspecific cross-covariance can occur in the
absence of coevolution. For example, in the case where
BH p 0 and BP 1 0, the host trait evolves only in response
to abiotic selection, dispersal, and drift, but the parasite
trait continues to evolve in response to the host trait. In this
case, interspecific cross-covariance is maintained only by the
parasite tracking the host. We can also use this expres-
sion to see that interspecific cross-covariance requires intra-
specific autocovariance in at least one species (if CH(x) p
CP(x) p 0, then CHP(x) p 0). Consequently, because both
CH(x),CP(x) → 0 in the limit of large geographic distance
(i.e., kxk → ∞), CHP(x) also goes to zero in the limit of
large distances. That is, interspecific cross-covariance dis-
appears at distances large enough that intraspecific auto-
covariance is negligible in both species.
Patterns of Local Adaptation across Spatial Scales

Analytical Results. Combining our model with our defini-
tion of local adaptation in continuous space (see eq. [2]),
we find

ℓH(x, y) p ~BH CHP(x2 y)2 CHP(0)ð Þ, ð7aÞ

ℓP(x, y) p ~BP CHP(0)2 CHP(x2 y)ð Þ, ð7bÞ
where ~BS is BS divided by additive genetic variance in spe-
cies S (see sec. S1 of the supplemental PDF). As all of the
functions involved with this result depend only on spa-
tial distance d ≥ 0, we simplify our notation by writing
ℓS(d) p ℓS(x, y) when d p kx2 yk. Similarly, we write
CH(d), CP(d), and CHP(d) for the spatial covariance func-
tions evaluated at geographic distance d. In figure 3, we
present our index of parasite local adaptation as a func-
tion of geographic distance across nine combinations of
lH and lP, with all other parameter pairs made equal.
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Spatial Scale Dependency of Local Adaptation. As shown
in figure 3, the magnitude of parasite local adaptation de-
pends on the spatial scale measurements are taken at. More
precisely, figure 3 suggests that local adaptation will be
underestimated for study designs that define allopatric pop-
ulations to be within the range of spatial autocorrelation for
either species. In addition, if we allow for asymmetric back-
ground parameter values, which we might expect for real-
istic systems, our model predicts the potential for not only
the magnitude of local adaptation to depend on the spatial
scale measurements are taken, but also the identity of the
locally adapted species. We present two such cases in fig-
ure 4. This result demonstrates that to obtain consistent
estimates of local adaptation, measurements need to be taken
at sufficiently large spatial scales.

A Consistent Estimate for Parasite Local Adaptation. The
most rigorous way to estimate parasite local adaptation
would be to confront parasites from a focal population
with hosts sampled at populations from many different lo-
cations in a large provenance trial (Blanquart et al. 2013).
However, such an experiment would be incredibly labor
intensive and prone to variable results as predicted by our
model. Fortunately, our model suggests an efficient way
to consistently measure parasite local adaptation. Namely,
when measurements are taken at sufficiently large spatial
scales, CHP(d) ≈ 0 so that parasite local adaptation ℓP(d) is
proportional to CHP(0) (see eqq. [7]). That is, parasite
local adaptation can be consistently measured by com-
puting the interspecific spatial covariance of sympatric
mean traits across locations separated by distances that
are large relative to both spatial scales of intraspecific auto-
correlation lH and lP. Importantly, this approach, similar
to previous approaches based on spatial covariance of allele
frequencies (Blanquart et al. 2013), requires only informa-
tion on host and parasite mean traits sampled across space
(rather than the outcome of a manipulative experiment)
and is thus much more feasible. Museum and herbarium
collections may offer a vital resource for characterizing host/
parasite phenotypic diversity across space (e.g., Rabosky
et al. 2016). With a geographic map of host and parasite
phenotypes in hand, a researcher could determine the spa-
tial scale at which intraspecific phenotypic autocorrelation
becomes negligible and thus the spatial scale at which inter-
specific spatial covariance of mean traits should be calcu-
lated to estimate local adaptation.
Discussion

Here, we have developed a model that tracks the evo-
lution of local mean traits of coevolving species distributed
in two-dimensional continuous space. This model accounts
� � � � � �

�
�

�
�

�
�

Figure 3: Parasite local adaptation ℓP , given by equation (7b), as a function of the geographic distance d between local parasite populations
and the populations of hosts they are confronted with, scaled by biotic selection and colocated variances across nine combinations of
lH , lP p 1, 10, 20, with VH p VP p 1 and BH=AH p BP=AP p 1=250. In the cases where lH p lP , we have ℓH(d) p ℓP(d) p 0 for all
d ≥ 0. In general, when all parameters are made equal between the two species, local adaptation does not emerge at any spatial scale.



50 The American Naturalist
for host-parasite interactions mediated by a trait-matching/
mismatching mechanism, abiotic stabilizing selection, Gauss-
ian dispersal, and random genetic drift. Solutions to this
model are Gaussian random fields that are characterized
by two intraspecific spatial autocovariance functions along
with an interspecific spatial cross-covariance function. We
have also introduced a novel index of local adaptation that
explicitly accounts for the geographic distance separating
allopatric populations. Combining our novel index of local
adaptation in continuous space with the cross-covariance
function obtained from our model, we found that variation
in measurements of parasite local adaptation across spatial
scales can be explained by intraspecific spatial autocor-
relation that emerges when species disperse in continuous
space. More precisely, figure 3 demonstrates that measure-
ments taken within the range of spatial autocorrelation for
either species will underestimate the magnitude of parasite
local adaptation or maladaptation. Building on this result,
we suggest taking measurements at spatial scales for which
intraspecific autocorrelation is negligible for both species
to obtain consistent estimates for parasite local adaptation.
The mathematical model we propose may help shed

light on several cases where estimates of parasite local ad-
aptation may have been dependent on the spatial scales at
which they were measured. For example, Tack et al. (2014)
showed that maladaptation of the parasitic powdery mil-
dew Podosphaera plantaginis on the invasive weed Plantago
lanceolata was strong at scales of 6–200 km but weak at
scales of less than 6 km. In another study, Thrall et al.
(2002) found evidence of local adaptation of the autoecious
rust pathogen Melampsora lini on its herbaceous peren-
nial herb host Linum marginale to be more apparent at
scales of 5–10 km than at scales of 200–400 m. Hanks and
Denno (1994) investigated local adaptation of the phytopha-
gous armored scale insect Pseudaulacaspis pentagon on indi-
vidual mulberry trees of the species Morus alba and found
stronger evidence of local adaptation for insects transplanted
to distant trees (≥300 m) than for insects transplanted to
nearby trees (!5 m). Schönrogge et al. (2006) found the
hoverflyMicrodonmutabilis to be extremely locally adapted
to its host ant Formica lemani when confronted with host
individuals separated by distances of 3–20 km, moderately
locally adapted at distances of 0.1–3 km, and not locally
adapted at !100 m. Last, Kaltz et al. (1999) studied local
adaptation of the insect-transmitted fungal pathogenMicro-
botryum violaceum to its host plant Silene latifolia and found
weak parasite local maladaptation when confronted with
nearby populations (!10 km), strong parasite maladap-
tation when confronted with populations at intermediate
distances (!30 km), and variation in maladaptation for re-
mote populations (!170 km) ranging from strong to weak
maladaptation.
These empirical studies demonstrate the key finding of

our model: that there can be variation in the magnitude of
local adaptation across spatial scales in naturally occurring
systems. For example, in all of the studies referenced in the
preceding paragraph, the estimated strength of local adap-
tation is a function of the geographic distance between the
Figure 4: Parasite local adaptation ℓP , given by equation (7b), as a function of geographic distance d between local parasite populations and
the populations of hosts they are confronted with, for two cases where the identity of the locally adapted species depends on the spatial scale
at which measurements are taken. The horizontal dotted line marks a measurement of zero parasite local adaptation. Vertical lines mark
spatial scales of intraspecific autocorrelation in the host (dashed vertical lines) and parasite (dotted vertical lines).
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populations for which it is assessed. A second useful pre-
diction from our model is that because of the phenotypic
spatial autocorrelation within each species, measurements
of local adaptation taken at larger distances will provide
more consistent estimates. Therefore, in each of the cases
referenced above (in which local adaptation varies as a
function of the spatial scale at which it is measured) we
would recommend summarizing local adaptation in the
system using comparisons between the most distant pop-
ulation pairs. However, because our model includes sto-
chasticity (due to random genetic drift), it also predicts that
there should be some amount of variation in individual
measurements of local adaptation, even at large spatial scales.
Kaltz et al. (1999) highlight this variation, finding high var-
iance in infection success of the Microbotryum parasite on
Silene hosts at the largest spatial distances. These infection
success measurements do appear to increase, on average,
with distance, and given the second prediction above, the
model would support summarizing these results using the
mean measurements at the largest spatial lags.
In addition to providing a theoretical explanation for

the observation of spatial variation in host-parasite local
adaptation, our model predicts that the shorter-dispersing
species should be locally adapted to the farther-dispersing
species, assuming that all other parameters are equal (see
fig. 3). Of the five studies listed above (by no means an
exhaustive list), two (Hanks and Denno 1994; Tack et al.
2014) fit this prediction. In Hanks and Denno (1994) the
parasite disperses a shorter distance than its host and is lo-
cally adapted, and in Tack et al. (2014) the parasite dis-
perses a longer distance than its host and is locally mal-
adapted. Deviations from this prediction may then imply
interspecific asymmetry of model parameters other than
dispersal distances. Equation (S13) in section S3 of the sup-
plemental PDF shows that the identity of the locally adapted
species depends on symmetry of each pair of model pa-
rameters (abiotic selection strengths AH, AP; biotic selection
strengths BH, BP; dispersal distances jH, jP; and rates of drift
DH, DP). Consequently, our model suggests that the identity
of the locally adapted species in the other three studies
(Kaltz et al. 1999; Thrall et al. 2002; Schönrogge et al. 2006),
in each of which the locally adapted species disperses far-
ther than its partner, is mediated by differential selection
strengths or differential rates of drift.
Our suggested approach for obtaining consistent mea-

surements of parasite local adaptation rests on the hy-
pothesis that intraspecific spatial autocorrelation explains
variation in measurements of coadaptation across spatial
scales. This hypothesis, implied by our theoretical find-
ings, can be tested using geographically referenced phe-
notypic data. More precisely, standard methods applied
in the analysis of spatial data (e.g., Dale and Fortin 2014)
may be used to determine the distances for which spatial
autocorrelation is negligible in each species. In turn, these
estimates can be compared to the geographical distances
between allopatric populations defined in previous em-
pirical studies. Our hypothesis would be rejected if vari-
ation in measurements of local adaptation occurs across
several spatial scales that are larger than both of the spa-
tial scales of autocorrelation in the host and parasite spe-
cies. In this case, additional theoretical studies would be
required to explain such cross-scale variation.
Additional hypotheses for the cross-scale variation in

spatial patterns of adaptation can be developed by extend-
ing our model in several directions. For example, heavy-
tailed dispersal kernels, which are likely common in na-
ture (Houtan et al. 2007; Bullock et al. 2016; García and
Borda-de-Água 2016; Jordano 2016), can be incorporated
into our model by replacing the dispersal operator with
fractional spatial derivatives (for mathematical details, see
Laskin 2000; Bayın 2016). As fractional derivatives are de-
fined in terms of spectral representations, our approach,
which recovers covariance functions from spectral repre-
sentations, is particularly well suited to this generalization
of our model. Such a generalization of our model may
then be used to predict variation in patterns of adaptation
as a consequence of dispersal mode. Another direction this
work can be taken is to consider spatial variation of the
abiotic environment by modeling abiotic optima as addi-
tional Gaussian random fields (making for four random
fields in total; one for the host trait, one for the parasite
trait, one for the host abiotic optimum, and one for the
parasite abiotic optimum). This second direction would
allow for theoretical predictions of spatial variation in lo-
cal adaptation based on spatial scales of abiotic environ-
mental variation. Hu et al. (2013) provides further infor-
mation on the mathematical details involved with both of
these extensions.
Although there is already a large body of theory on

geographically structured host-parasite coevolution (e.g.,
Gandon et al. 1996; Nuismer et al. 2000; Gandon 2002;
Gandon and Michalakis 2002; Nuismer et al. 2003; Nuismer
2006; Ridenhour and Nuismer 2007; Gandon and Nuismer
2009; Débarre et al. 2012; Lion and Gandon 2015), these
studies are limited in their ability to explain variation in
patterns of host-parasite adaptation across spatial scales
because they depend on indices of local adaptation that
do not explicitly account for geographic distance. In con-
trast, empirical studies have emphasized that such cross-
scale variation is common (Hanks and Denno 1994; Kaltz
et al. 1999; Thrall et al. 2002; Schönrogge et al. 2006; Tack
et al. 2014). Our model, combined with our novel index of
local adaptation, is, to our knowledge, the first to provide a
mechanistic explanation for measurements of parasite local
adaptation that vary across spatial scales. Furthermore, it is
consistent with empirical observations that local adaptation
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in host-parasite systems tends to be stronger at larger spa-
tial scales relative to shorter spatial scales.
In addition to the geographically explicit index of lo-

cal adaptation we have introduced here, our mathematical
model of continuous space coevolution has several novel
features. In comparison to previous models of coevolution
in continuous space (Nuismer et al. 2000, 2003), our model
differs in three major ways. First, whereas previous contin-
uous space models have focused on interspecific interac-
tions mediated by allelic variation at genetic loci, our model
focuses on coevolution of a pair of quantitative traits that
determine the outcomes of interactions. Second, while pre-
vious work has focused on a single continuous spatial axis,
our model accounts for the more biologically relevant case
of two continuous spatial axes. Last, our model accounts for
the stochastic dynamics of random genetic drift, which rarely
yields tractable evolutionary models in two-dimensional
continuous space (Felsenstein 1975; Etheridge 2004; Barton
et al. 2010). It is therefore likely that investigations relax-
ing important assumptions of our model, such as spatially
homogeneous abundance densities and weak biotic selec-
tion, will require the study of individual-based simulations.
Conclusion

In summary, our work here provides initial steps toward
understanding coevolution and local adaptation in con-
tinuous space using an analytically tractable mathematical
model. Our theoretical findings form testable hypotheses
for previously unexplained variation observed in empirical
host-parasite systems and suggest an approach to consis-
tently measure parasite local adaptation in the wild. Taken
together, this work establishes a novel theoretical approach
to model spatial coevolution and lends a new perspective for
understanding spatial patterns of interspecific coadaptation.
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